a2 United States Patent

US009305147B1

(10) Patent No.: US 9,305,147 B1

Azmat et al. 45) Date of Patent: Apr. 5, 2016
(54) PREVENTING LICENSE EXPLOITATION 2010/0205303 Al* 82010 Chaturvedi GO6F 21/126
USING VIRTUAL NAMESPACE DEVICES _ 709/226
2010/0250730 Al* 9/2010 Menzies GO6F 21/105
. 709/224
(71) Applicant: Flexera Software LLC, Itasca, IL (US) 2011/0197062 Al* 82011 De Gaetano ... HO4L. 63/10
713/167
(72) Inventors: Haroon Azmat, Maidenhead (GB); 2012/0110571 Al* 5/2012 Smith ...coooooovrrnrence. GOGF 9/445
Charles Tonkinson, Henley-on-Thames 718/1
(GB) 2014/0189685 Al* 7/2014 Kripalani GOGF 8/65
718/1

(73) Assignee: FLEXERA SOFTWARE LLC, Itasca, OTHER PUBLICATIONS

1L (US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by O days.

(21) Appl. No.: 14/733,871

(22) Filed: Jun. 8, 2015

(51) Int.CL

GOGF 21/12 (2013.01)
GOGF 21/10 (2013.01)
(52) US.CL
CPC ... GOGF 21/121 (2013.01); GOGF 21/105

(2013.01)
(58) Field of Classification Search
CPC ..o GOG6F 21/121; GO6F 21/105
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

8,683,560 B1* 3/2014 Brooker GO6F 21/44
713/155

2008/0134176 Al* 6/2008 Fitzgerald GO6F 9/45537
718/1

2008/0271016 Al* 10/2008 Chessccccooeenine GO6F 8/63
718/1

2009/0328225 Al* 12/2009 Chambers GO6F 21/10
726/26

Petrlic et al., Privacy-Preserving Digital Rights Management in a
Trusted Cloud Environment, Jun. 2012, 11th International Confer-
ence on Trust, Security and Privacy in Computing and Communica-
tions, pp. 958-963.*

* cited by examiner

Primary Examiner — Kenneth Chang
(74) Attorney, Agent, or Firm — Perkins Coie LLP

(57) ABSTRACT

Some embodiments include a method of preventing software
licensing exploitation in a virtual environment. The method
includes: retrieving, by a first instance of a licensed applica-
tion running on an original virtual machine as permitted by an
original software license, an original unique identifier from a
virtual device in the original virtual machine; creating, by a
hypervisor of the virtual environment, a cloned virtual
machine instance as a copy of the original virtual machine;
retrieving, by a second instance of the licensed application
running on the cloned virtual machine instance, a new unique
identifier from a virtual device in the cloned virtual machine
instance; and determining, by the second instance of the
licensed application running on the cloned virtual machine
instance, that the original software license does not apply to
the cloned virtual machine instance because the new unique
identifier is different from the original unique identifier.

22 Claims, 8 Drawing Sheets

\irtaal achina instanss 530A

Wil Baching (ratanes 530B

i~ 520

Physical machine 510

U.S. Patent Apr. 5, 2016 Sheet 1 of 8

US 9,305,147 B1

Virtual machine
131A

Virtual machine
132A

Virtual machine
133A

Hypervisor 120A

Physical machine 110A

FIG. 14

Virtual machine
131B

Virtual machine
1328

Virtual machine
133B

Hypervisor 120B

Conventional OS 152

Conventional OS 151

Conventional OS 153

Physical machine 110B

FIG. IB

U.S. Patent Apr. 5, 2016 Sheet 2 of 8 US 9,305,147 B1

N
O

Virtual machine 230

Application 280

0OS 260

OS layer interface 265

System namespace 240
Virtual device 250

ldentifier 255

Hypervisor 220

Physical machine 210

FIG. 2

U.S. Patent Apr. 5, 2016 Sheet 3 of 8 US 9,305,147 B1

WVirtual Machings Instance 330

nes Management
wnteny - Laver

Wi Ziaé O -
Layer 4

Wirtual Byalern -
Lo ©

Hypervisor 320

FIG. 3

U.S. Patent Apr. 5, 2016 Sheet 4 of 8 US 9,305,147 B1

Wirtugl Machine hnstanes 430

Hyperviéor 420

FIG. 4

US 9,305,147 B1

Sheet 5 of 8

Apr. 5, 2016

U.S. Patent

$ OIA

01§ suyoew (eoishud

026 ™~

459

w0

8089~

HOCS sasmsn] Susvgg [

VG55~
V086~

aadEy - L

imaRE FsE

YOEG waueis auRgsm wavha

U.S. Patent Apr. 5, 2016 Sheet 6 of 8 US 9,305,147 B1

605

a first instance of a licensed application running on an original virtual machine retrieves
an original unique identifier from a virtual device of the original virtual machine

610
the first instance of the licensed application running on the original virtual machine
stores the original unique identifier in a virtual persistence store of the original virtual
machine

615

the hypervisor receives an instruction to clone the original virtual machine

620

in response to the instruction, the hypervisor creates a cloned virtual machine instance
as a copy of the original virtual machine

’ 625

the hypervisor further generates a new unique identifier and injects a virtual device
containing the new unique identifier into the cloned virtual machine instance

{ 630

the hypervisor initializes the cloned virtual machine instance

635
a second instance of the licensed application running on the cloned virtual machine

instance retrieves a new unique identifier from the injected virtual device in the cloned
virtual machine instance

the second instance of the licensed application runnm?g4gn the cloned virtual machine
instance determines that the original software license does not apply to the cloned
virtual machine instance because the new unigue identifier is different from the
original unigue identifier

645
the second instance of the licensed application running on the cloned virtual machine
instance sends to a license server, a request for a new software license to permit the
second instance of the licensed application to continue running on the cloned virtual
machine instance

Reguest permitted?

v 655 660
the second instance of the licensed
the second instance of the licensed application stops running on the
application continues to run on the cloned virtual machine instance since
cloned virtual machine instance the original software license does not
under the new software license grant the cloned virtual machine to
run the licensed application

FIG. 6

U.S. Patent Apr. 5, 2016 Sheet 7 of 8 US 9,305,147 B1

705
a first instance of a license server running on an original virtual machine stores at least
one software license in a virtual persistence store of the original virtual machine
[710

the first instance of the license server running on the original virtual machine retrieves
an original unique identifier from a virtual device of the original virtual machine

} 715

the first instance of the license server stores the original unigue identifier in the virtual
persistence store

‘ 720
the hypervisor creates a snapshot of the original virtual machine, in response to an
instruction
[725

the first instance of the license server grants the software license to a machine
permitting the machine to run a software application under the software license

l 730

the first instance of the license server removes the software license from the virtual
persistence store of the original virtual machine

the hypervisor reverts the original virtual machine Zg% reverted virtual machine
instance based on the snapshot, and injects a virtual box containing a new unigue
identifier into the reverted virtual machine instance
740
a second instance of the license server running on the reverted virtual machine
instance retrieves the new unique identifier from a virtual device of the reverted
virtual machine instance

! 745
the second instance of the license server running on the reverted virtual machine
instance determines a possibility that the license server is not allowed to grant the
software license stored in the virtual persistence store to another machine

l 750
the second instance of the license server running on the reverted virtual machine
instance sends an inquiry to an inventory tracking system on whether the license
server has already granted the software license to a machine

755
Yes No
4 760 765
the second msttahnce ?{ the llﬁense the second instance of the license
]sc;erveil’t;em.o%/esl € S.Ot ware tlcense; server keeps the software license in
throm etvg u.at pe‘rs:s %ﬂce S o;e 0 the virtual persistence store of the
€ rixe; fh \;{r ual machine '.T’S ar)[ce reverted virtual machine instance so
S0 that Ihe license server witl no that the license server can grant the
grant the removed software license software license in the future
again

FIG. 7

U.S. Patent Apr. 5, 2016 Sheet 8 of 8 US 9,305,147 B1

800

&

; _ MEMORY
PROCESSOR

BRGNS

NOM-VOLATILE MEMORY
806

MNETWORK INTERFACE 808 BUS
810

DRIVE UNIT 812

FIG. 8

US 9,305,147 B1

1
PREVENTING LICENSE EXPLOITATION
USING VIRTUAL NAMESPACE DEVICES

RELATED FIELD

At least one embodiment of this disclosure relates gener-
ally to inventory tracking or license management systems,
and in particular, methods and systems to prevent software
licensing exploits in virtual machine environment using vir-
tual namespace devices.

BACKGROUND

There is an increasing demand for efficient software licens-
ing management and accurate inventory tracking. Software
licensors grant software licenses to software users and track
the computers running software legitimately under the
licenses. On the other hand, a growing number of enterprises
are implementing virtual machine technology to incorporate
visualization into their computer environments and to con-
solidate the server usage. However, emerging virtual machine
technology raises new challenges to software licensing.

A virtual machine is an emulation of a computer system
that imitates dedicated hardware. The end user of the a virtual
machine can have the same user experience on the virtual
machine as he or she would have on a dedicated hardware
machine. Because virtual machines are software emulations
of'dedicated hardware machines, it is easy to create snapshots
or clones of virtual machines. A snapshot is a copy of a virtual
machine at a given point in time. The snapshot can be used to
restore the virtual machine to that particular point in time.
Therefore, if a software license restricts a virtual machine to
use a software application until a certain time point, an
exploiter can continue to use the software despite of the time
limitation of the license since the virtual machine can be
reverted back to an earlier state using a snapshot.

Similarly, multiple clones (copies) of a virtual machine can
be made from a single virtual machine. Since it is difficult to
track and differentiate between the clones of the virtual
machine, an exploiter can run multiple copies of a software
application on the clones despite that the software license
restricts the usage of the software application to a single
machine.

Avoiding exploitation of software licenses can recover lost
profits for a software licensor. However, software vendors
struggle to implement licensing management technology that
takes virtual machine technology into account. It is a chal-
lenge to identify and differentiate copies of virtual machine
instances for license tracking purpose.

SUMMARY

Disclosed is a mechanism for software license monitoring
and enforcement using virtual machine namespace devices.
The virtual machine namespace devices include unique iden-
tifiers for uniquely identifying virtual machine instances for
inventory tracking. By comparing the identifiers of the virtual
machine instances, a software license management system
can prevent license leakage, when a time shift event occurs in
a virtual environment thorough a virtual machine operation
such as clone or snapshot.

By comparing the current identifier of the current virtual
machine instance with a previous identifier of the an original
virtual machine, the system is able to identify a cloned virtual
machine instance or a reverted virtual machine instance based
on a snapshot. The system prevents the cloned virtual
machine instance from using a software application under the

10

15

20

25

30

35

40

45

50

55

60

2

original software license, since the original software permits
only the original virtual machine to use the software applica-
tion. The system also requires a license server running on a
reverted virtual machine instance (based on the snapshot) to
confirm the legitimacy of the available licenses before grant-
ing those licenses to machines.

The software license management system also allows
seamless license usage by a migrated virtual machine, as a
migration event does not change the unique identifier for the
virtual machine being migrated.

Some embodiments of this disclosure have other aspects,
elements, features, and steps in addition to or in place of what
is described above. These potential additions and replace-
ments are described throughout the rest of the specification

BRIEF DESCRIPTION OF THE DRAWINGS

FIGS. 1A and 1B are block diagrams illustrating two types
ofhypervisor for managing and monitoring virtual machines,
according to various embodiments.

FIG. 2 is a block diagram illustrating a hypervisor that
injects a virtual device into a system namespace of a virtual
machine, according to various embodiments.

FIG. 3 is a block diagram illustrating a virtual environment
for preventing license exploitation using virtual machine
clones, according to various embodiments.

FIG. 4 is a block diagram illustrating a virtual environment
for preventing license exploitation by reverting back virtual
machines using snapshots, according to various embodi-
ments.

FIG. 5 is a block diagram illustrating a virtual environment
including at least two virtual machines for enforcing software
licenses, according to various embodiments.

FIG. 6 is a flow diagram illustrating a sample process of
preventing software licensing exploitation in a virtual envi-
ronment, according to various embodiments.

FIG. 7 is a flow diagram illustrating another sample pro-
cess of preventing software licensing exploitation in a virtual
environment, according to various embodiments.

FIG. 8 is a diagrammatic representation of a machine in the
example form of a computer system within which a set of
instructions, for causing the machine to perform any one or
more of the methodologies or modules discussed herein, may
be executed.

The figures depict various embodiments of this disclosure
for purposes of illustration only. One skilled in the art will
readily recognize from the following discussion that alterna-
tive embodiments of the structures and methods illustrated
herein may be employed without departing from the prin-
ciples of the invention described herein.

DETAILED DESCRIPTION

FIGS. 1A and 1B illustrate two types of hypervisor for
managing and monitoring virtual machines, according to
various embodiments. A hypervisor (also referred to as “vir-
tual machine monitor” or “virtual machine manager™”) is a
piece of computer software, firmware, hardware, or a combi-
nation thereof that creates and runs virtual machines. A hard-
ware machine, on which a hypervisor runs virtual machines,
is defined as a host machine. The virtual machines are called
guest machines. The hypervisor presents the guest operating
systems of the guest machines with a virtual operating plat-
form and manages the execution of the guest operating sys-
tems. Multiple instances of guest operating systems can share
the virtualized hardware resources supported by the hardware
machine.

US 9,305,147 B1

3

One type of hypervisor is bare-metal hypervisor (also
referred to as “type-1 hypervisor” or “native hypervisor™), as
illustrated in FIG. 1A. The bare-metal hypervisor 120A runs
directly on the host physical machine 110A (hence the name
“bare-metal”). The guest operating systems of the virtual
machines 131A, 132A and 133 A run as processes on the host
physical machine 110A via the hypervisor 120A. Examples
of bare-metal hypervisors include Microsoft Hyper-V, Citrix
XenServer, VMware ESX/ESXi, Oracle VM Server, etc.

Another type of hypervisor is hosted hypervisor (also
referred to as “hype-2 hypervisor”), as illustrated in FIG. 1B.
One or more conventional operating systems 151, 152 and
153 run on the host physical machine 110B. The hosted
hypervisor 120B runs on the convention operating system
152 as a computer program. The guest operating systems of
the virtual machines 131B, 132B and 133B run on top of the
conventional operating system 152 via the hypervisor 120B.
Examples of hosted hypervisor include VMware workstation
and VirtualBox.

There are also hybrid types of hypervisor. For example,
Linux’s Kernel-based Virtual Machine (KVM) and FreeB-
SD’s bhyve are kernel modules that effectively convert the
host operating systems to type-1 bare-metal hypervisors.
Nevertheless, the Linux and FreeBSD operating systems are
still conventional general-purpose operating systems. The
KVM and bhyve hypervisors compete with other applications
for virtual machine resources, which can be also categorized
as type-2 hosted hypervisors.

A hypervisor of a virtual environment can manage and
modify a system namespace at the operating system level of a
virtual machine. The system namespace identifies and main-
tains system devices for the operating system of the virtual
machine. The system devices in the system namespace (also
referred to as “system namespace devices”) can include vir-
tualization of underlying physical devices, as well as virtual
devices (also referred to as “virtual appliances™) that have no
support from any underlying physical devices (other than the
physical processor executing instructions) and does not emu-
late any physical component of the physical machine. For
example, in some embodiments, the hypervisor can creates a
virtual device and injects the virtual device into a system
namespace of a virtual machine. In some other embodiments,
the hypervisor can instruct an operating system of a virtual
machine to create a virtual device in the namespace of the
virtual machine.

Disclosed herein is a mechanism for uniquely identifying a
virtual machine for inventory tracking purpose when time
shift events occur through clone, snapshot or other operations
on the virtual machine. Time shift events for a virtual
machine, such as cloning or snapshotting, can generate mul-
tiple instances of the virtual machine. The mechanism dis-
closed herein is able to identify each unique instance of the
virtual machine that runs on a virtual environment.

Each instance of the virtual machine is uniquely identified
across virtual platforms and across hypervisors. In other
words, each instance of the virtual machine is uniquely iden-
tified across all virtual machines in the world. The unique
identification is independent to the virtual environment and
independent of the operating system of virtual machine
instances.

There are various operations available for manipulating
instances of virtual machines in the virtual environment.
Three common operations are clone, snapshot and migration
operations.

During a migration operation, the hypervisor moves a vir-
tual machine from a physical machine managed by a hyper-
visor to another physical machine managed by another hyper-

20

25

40

45

50

55

60

4

visor. Migration can be either live or cold. A live migration
refers to a process of moving a running virtual machine
between physical machines without disconnecting the
client(s). A cold migration process disconnects the clients,
stops or halts the virtual machine, and then moves the virtual
machine to a new physical machine. During a migration
operation, no new instance of the virtual machine is created.
The same instance of the virtual machine is moved to a new
physical machine. After the migration operation, the virtual
environment of the original physical machine no longer
include that instance of the virtual machine.

During a clone operation, a hypervisor of the virtual envi-
ronment creates a new virtual machine instance of an existing
virtual machine. During a snapshot operation, the hypervisor
creates a time-based copy of a virtual machine instance.
When the hypervisor conducts a clone or snapshot operation,
the hypervisor creates a new instance of the existing virtual
machine. In other words, a separate virtual machine instance
is created in the virtual environment managed by the hyper-
visor.

A cloned virtual machine instance is a new virtual machine
that is a copy of the original virtual machine. The cloned
virtual machine and the original virtual machine can both
continue to run and evolve into states that are different from
each other. A snapshot is a point-in-time backup for a state of
the original virtual machine. The snapshot allows reverting
the virtual machine to a previous state at a particular point in
time.

The identification mechanism disclosed herein needs to
differentiate between the migration operation and the clone or
snapshot operation. During a migration operation, the origi-
nal virtual machine instance and the migrated virtual machine
instance should be identified as the same virtual machine
instance. In other words, for the migration operation, the
identifier of the virtual machine follows the virtual machine
as it migrates to another physical machine.

In contrast, during a clone operation, the original virtual
machine instance and the cloned instance of the virtual
machine should be identified as two separate virtual machine
instances. Similarly, during a snapshot operation, the original
virtual machine instance and the reverted virtual machine
instance based on the snapshot should be identified as two
separate virtual machine instances. In other words, for the
clone or snapshot operation, a new identifier is assigned to
newly cloned or snapshot instance of the virtual machine,
while the original virtual machine instance still keeps the
original identifier.

By comparing the current identifier of the current virtual
machine instance with a previous identifier of the an original
virtual machine, the system is able to identify a cloned virtual
machine instance or a reverted virtual machine instance based
on a snapshot. The system can prevent the cloned or reverted
virtual machine instance from using a software application
under the original software license, if the original software
permits only the original virtual machine to run the software
application.

A virtual device is used as a vehicle for communicating the
unique identifiers among the virtual machine instances and
the hypervisor. FIG. 2 illustrates a hypervisor that injects a
virtual device into a system namespace of a virtual machine,
according to various embodiments. The hypervisor 220
monitors and manages the operations of the virtual environ-
ment 200. As a result of an operation, for example a clone or
snapshot operation, the hypervisor 220 creates a new virtual
machine instance 230. Accordingly, the hypervisor 220 also
generates an identifier 255 assigned to the virtual machine
230. The identifier 255 can be a globally unique identifier.

US 9,305,147 B1

5

Hypervisor 220 continues to monitor and manage the vir-
tual machine 230 running on a physical machine 210. The
virtual machine 230 includes a system namespace 240 for
identifying and maintaining system devices. The hypervisor
220 can inject a virtual device 250 into the system namespace
240 of the virtual machine 230.

As part of the system namespace 240, the virtual device
250 can bootstrap initialization of the operating system 260 of
the virtual machine 230. In other words, when the operating
system 260 initializes, the virtual device 250 initializes along
with the operating system 260. The virtual device 250 is
available for access within the virtual machine 230, after the
operating system 260 finishes the initialization process.

The virtual device 250 does not need to have any support
from or attachment to any physical component of the physical
machine 210, and does not emulate any physical component
of the underlying physical machine 210. The virtual device
250 contains the identifier 255 that uniquely identifies the
virtual machine 230 and globally differentiates the virtual
machine from other virtual machine instances.

The operating system 260 of the virtual machine 230 can
provide an operating system layer interface 265 (as referred to
as “OS layer interface”). Using the OS layer interface 265, the
operating system 260 of the virtual machine 230 can expose
the information of the identifier 255 to an application 270
running in the virtual machine 230 at the application level. In
other words, the application 270 can retrieve the identifier 255
by accessing the virtual device 250 via the OS layer interface
265. The identifier 255 can include, e.g., a number of bytes.
Once the application 270 retrieves the identifier 255, the
application 270 can use the retrieved information in its own
context. For example, the application 270 can use the identi-
fier 255 to uniquely identify the current instance of the virtual
machine 230 at the application level.

In some embodiments, the system namespace 240 can be
an Advanced Configuration and Power Interface (ACPI). The
virtual device 250 can be a virtual device that conforms to the
ACPI namespace device specification. In some embodiments,
the virtual device 250 can have a Plug and Play compatible ID
(CID). The hypervisor can also execute an ACPI notify opera-
tion to notify the state change of newly injected the virtual
device 250.

In some embodiments, the identifier 255 can be a Globally
Unique Identifier (GUID) or Universally Unique Identifier
(UUID), which is a 128-bit value that may or may not be
generated from random or pseudo-random numbers. The
GUID or UUID mechanism enables generating unique iden-
tifiers without any central authority. The total number of such
unique GUIDs can be as much as 2*%2. The number of unique
GUIDs is so large that the probability of the same number
being generated randomly twice is negligible.

The GUID or UUID mechanism can also generate the
identifiers based on certain information such as Ethernet
MAC address. The mechanism does not rely on each machine
having a different Ethernet MAC address but that does help to
even further ensure that two different UUIDs will not conflict.

An inventory tracking system can use the identifier 255,
uniquely identifying the virtual machine 230, to defeat
exploits of software (or even hardware) licenses. Common
license exploits in virtual environments includes, e.g.,
exploits involving clone operations (also referred to as “clone
exploits™) and exploits involving snapshot operations (also
referred to as “snapshot exploits™).

A clone exploitis a license exploit of illegitimately obtain-
ing more licenses by using a hypervisor to create clones of an
original virtual machine. In one example, there is a license
permitting usage of a software on one and only one machine

20

30

40

45

50

6

(either a virtual machine or a physical machine); and there is
already a virtual machine running the software legitimately
under the license. The hypervisor then creates clones of the
original virtual machines. If there is no mechanism to
uniquely identifying the original virtual machine and its
clones, a license management system will not be able to
differentiate between the original virtual machine and the
clones. As a result, the clones of the original virtual machine
will be able to run the software without rejection from the
license management system, even that the license permits
only one machine to use the software.

If the system can uniquely identify the original virtual
machine that the licensed application runs and the clones of
the virtual machine, the system is able to defeat the clone
exploit. For example, if the original virtual machine and the
clones have different unique identifiers, a licensed applica-
tion can check the unique identifiers and determine whether
the license is legitimate.

FIG. 3 illustrates a virtual environment for preventing
license exploitation using virtual machine clones, according
to various embodiments. A hypervisor 320 creates a new
virtual machine instance 330 as a clone of an original virtual
machine, and generates a hypervisor control ID (HCI) 355
that uniquely identifies the new virtual machine instance 330.
The hypervisor 320 injects a virtual device containing the
hypervisor control ID 355 into the new virtual machine
instance 330, before the hypervisor initializes the new virtual
machine instance 330.

The licensed application 370 uses an HCI extractor 385 to
retrieve the HCI 355 from the virtual device of the virtual
machine instance 330 and stores the HCI 355 in a virtual
persistence store 380. The licensed application 370 compares
the HCI 355 for the new virtual machine instance 330 with an
original hypervisor control ID for the original virtual
machine. If those two HClIs are different, the licensed appli-
cation cannot continue to run on the new virtual machine
instance under the original software license, since the original
software license permits only the original virtual machine to
run the licensed application.

Besides clone exploit, there is also snapshot exploits in the
virtual environment. A snapshot exploit is a license exploit of
using favorable license store to illegitimately obtain more
license, as the snapshot allows reverting a virtual machine to
an earlier state. For example, there is a licensing server of the
license management system that has five licenses, for permis-
sion of using a software application on five different
machines. The licensing server, running on a virtual server,
can store the five licenses in a virtual persistent data store
(also referred to as “virtual persistence store™) in a virtual
machine. The hypervisor conducts a snapshot operation to
create a snapshot of the virtual machine, which contains five
licenses in its storage.

Then the licensing server grants five licenses to five
machines. Accordingly the licensing server reduces the num-
ber oflicenses in the virtual persistent data store to zero. Then
the hypervisor conducts a revert operation to use the snapshot
to revert the virtual machine back to a previous state. In that
previous state, the virtual machine still contains five licenses
in its storage. Again, the license server then has another five
licenses to distribute. Therefore, the license server practically
can grant licenses to ten different machines. Furthermore, the
hypervisor can continue to conduct more reversion operations
to obtain more licenses. Therefore, the license server can
grant an unlimited number of licenses, even that the licensing
agreement only permits usage of the software on five
machines.

US 9,305,147 B1

7

If the license server can uniquely identify the original
virtual machine that the license server runs and the snapshot
of the virtual machine, the license server is able to defeat the
license exploit. For example, if the original virtual machine
and the snapshot have different unique identifiers, the license
server after the reversion operation will be able to determine
that the license server is running on a virtual machine that has
been reverted back to a previous state. As a result, the license
server determines that the licenses in the virtual persistent
data store may have already be granted to one or more
machines. The license server needs to conduct an inquiry
(e.g., an external inquiry to the license management system,
or internal inquires to virtual machine instances) to ensure
that the licenses have not been granted before continuing
granting the licenses.

FIG. 4 illustrates a virtual environment for preventing
license exploitation by reverting back virtual machines using
snapshots, according to various embodiments. A hypervisor
420 reverts back an original virtual machine to a reverted
virtual machine instance 430 based on a snapshot of the
original virtual machine. The hypervisor further generates a
hypervisor control ID (HCI) 455 that uniquely identifies the
reverted virtual machine instance 430. The hypervisor 420
injects a virtual device containing the hypervisor control ID
455 into the new virtual machine instance 430, before the
hypervisor initializes the reverted virtual machine instance
430.

Thelicense server 470 uses an HCI extractor 485 to retrieve
the HCI 455 from the virtual device of the virtual machine
instance 430 and stores the HCI 455 in a virtual persistence
store 480. The license server 470 compares the HCI 455 for
the reverted virtual machine instance 430 with an original
hypervisor control ID for the original virtual machine. If
those two HCIs are different, the license server determines
that there is a possibility that some software licenses available
to the license server running on the reverted virtual machine
had already been granted, and therefore the license server
cannot grant those software licenses again.

Assuming the license server running on the original virtual
machine stores software licenses in a virtual persistence store
of the virtual machine. Then the hypervisor takes a snapshot
of the original virtual machine. The snapshot includes the
information of the stored software licenses. After the hyper-
visor takes the snapshot of the original virtual machine, the
license server grants a particular software license to a
machine and accordingly removes that particular software
license from the virtual persistence store so that the license
sever running on the original virtual machine cannot grant the
particular software license twice.

However, after the hypervisor reverts the original virtual
machine to the reverted virtual machine instance 430 using
the snapshot. That particular software license is again avail-
able in the reverted virtual machine instance 430. By com-
paring the HCIs of the original virtual machine and the
reverted virtual machine instance, the license server 470 run-
ning on the reverted virtual machine instance realizes that the
particular software license may have already been granted
during the lifetime of the original virtual machine (before the
snapshotting event), even that the particular software license
is still in the reverted virtual machine instance 430. The
license server 470 running on the reverted virtual machine
instance 430 needs to check with a license management sys-
tem or other machines to confirm whether the license server
470 still can grant that particular software license to a
machine.

FIG. 5 illustrates a virtual environment including at least
two virtual machines for enforcing software licenses, accord-

15

30

40

45

55

65

8

ing to various embodiments. FIG. 5 illustrates a bare-metal
hypervisor 520 running on a physical machine 510. In some
other embodiments, the hypervisor 520 can be a hosted
hypervisor instead of a bare-metal hypervisor. The hypervisor
520 can be, e.g., a Microsoft Hyper-V hypervisor, a Kernel-
based Virtual Machine (KVM) hypervisor, a Citrix Xen-
Server hypervisor, or other types of hypervisor.

The hypervisor 520 creates two virtual machine instances
530A and 530B. A licensed application 570 A runs on virtual
machine 530A. A license server 570B runs on virtual machine
530B. In some other embodiments, there can be two different
hypervisors. One of the hypervisor creates virtual machine
530A and another hypervisor creates virtual machine 530B.

At the virtual system layer, the hypervisor 520 tracks the
virtual machine instances for different operations. The hyper-
visor 520 can detect virtual machine operations and events
via, e.g., application programming interface (API) of the
hypervisor 520. For example, for a virtual machine migration
operation, the hypervisor 520 determines that no new virtual
machine instance is created and generates no new identifier. If
there is a creation or clone or snapshot operation, the hyper-
visor 520 determines that a new virtual machine instance is
created in the virtual environment 500 and then generates a
new identifier to be assigned to the new instance. The unique
identifier can be, e.g., a Microsoft virtual machine generation
identifier generated by Microsoft Hyper-V. Depending on the
operating systems of the virtual machines and the type of
hypervisor, the hypervisor 520 can choose difference mecha-
nism to generate unique identifiers for virtual machine
instances.

The hypervisor 520 injects an HCI virtual device 550A
containing the newly generated unique identifier 555A to a
system namespace of the virtual machine 530A, called
Advanced Configuration and Power Interface (ACPI) 540A,
when the hypervisor 520 creates the virtual machine instance
530A. In other words, the virtual machine instance 530A
loads up the HCI virtual device 550A, when the virtual
machine instance 530A starts up running for the first time and
every time afterwards. In some other embodiments, the sys-
tem namespace can be other type of namespace other than
ACPI. In some embodiments, the HCI virtual device 550A is
created using ACPI Source Language (ASL).

The virtual device 550A includes a hypervisor control 1D
(HCI) 555A, which is the unique identifier generated by the
hypervisor 520. When the operating system of the virtual
machine 530A boots up, the operating system initializes and
loads up the virtual device 550A. The ACPI interface 540A of
virtual machine 530A further runs a HCI (hypervisor control
ID) service 542A, as a kernel mode service to provide service
level calls related to the HCI virtual device 550A.

At the OS services layer 560A, there is a host/OS interface
562A responsible for communicating with the HCI service
542A, and an ACPI/OS interface 565A responsible for com-
municating with the HCI virtual device 550A. Applications
running on the virtual machine 530A can access the HCI
virtual device 550A via the host/OS interface 562A and the
ACPI/OS interface 565A. For example, an application 585A
called HCI extractor can access the HCI virtual device 550
and retrieves the hypervisor control ID (HCI) 555A. The HCI
extractor 585A then saves the HCI 555A in a virtual persis-
tence store 580A. In some embodiments, the HCI extractor
585A is part of an inventory tracking system or a license
management system.

The licensed application 570A can use the HCI 555A
stored in the virtual persistence store 580A as the unique
identifier of the virtual machine instance 530A on which the
licensed application 570A runs. The licensed application

US 9,305,147 B1

9

570A can either retrieve the HCI 555A from the virtual per-
sistence store 580A directly, or via the HCI extractor 585A.

The licensed application 570A retrieves and stores a first
instance of the HCI 555A when the licensed application 570A
runs legitimately on the virtual machine 530A under a
license. In order to check whether the license is still valid, the
licensed application 570A will retrieves and stores a second
instance of the HCI 555A from the virtual device 550A in a
future point of time. If the first and second instances of the
HCI 555A are different, the licensed application 570A deter-
mines a time shift event such as cloning has occurred. In other
words, the licensed application 570A now runs on a cloned
virtual machine instead of an original virtual machine. The
licensed application 570A needs to contact a server of the
inventory tracking system or the licensing management sys-
tem, e.g., the licensed server 570B, to determine whether the
virtual machine 530A still has a valid license to run the
licensed application 570A.

Similarly, a license server 570B runs on another virtual
machine 530B managed by the hypervisor 520. The hypervi-
sor injects another unique identifier (i.e., HCI) 555B into the
virtual device 550B of ACPI interface 540B. An HCI extrac-
tor 585B can extract the HCI 555B from the virtual device
550B and stores the HCI 55B in virtual persistence store
580B. The license server 570B can either retrieve the HCI
555B from the virtual persistence store 580B directly, or via
the HCI extractor 585B.

The license server 570B can use the saved HCI 555B stored
in the virtual persistence store 580B as the unique identifier of
the virtual machine instance 530B on which the license server
570B runs. The license server 570B retrieves and stores a first
instance of the HCI 555B when the license server 570B runs
on the virtual machine 530B. In order to check whether the
virtual machine is reverted to a snapshot, the license server
570B will retrieves and stores a second instance of the HCI
555B from the virtual device 550B in a future point of time. If
the first and second instances of the HCI 555B are different,
the license server 570B determines a time shift event, such as
reverting the virtual server to a previous point in time, has
occurred. In other words, the license server 570B now runs on
a reverted virtual machine based on a snapshot instead of an
original virtual machine. The license server 570B needs to
contact the inventory tracking system or the licensing man-
agement system, to determine whether the license(s) stored in
the virtual machine 530B are not obsolete and still available
for the license server 570B to grant properly to machines.

FIG. 6 illustrates a sample process of preventing software
licensing exploitation in a virtual environment, according to
various embodiments. Particularly, the process 600 prevents
licensing exploitation using clones of virtual machines. A
hypervisor manages and monitors one or more virtual
machines running in the virtual environment. The hypervisor
can be, e.g., a bare-bone hypervisor directly running on top of
a hardware machine, or a hosted hypervisor running on top of
an operating system.

At step 605 of the process 600, a first instance of a licensed
application running on an original virtual machine retrieves
an original unique identifier from a virtual device of the
original virtual machine. The original unique identifier
uniquely identifies the original virtual machine. The first
instance of the licensed application runs on the original vir-
tual machine as permitted by an original software license.

At step 610, the first instance of the licensed application
running on the original virtual machine stores the original
unique identifier in a virtual persistence store of the original
virtual machine. The original unique identifier will be avail-
able to the original virtual machine, as well as copies of the

10

15

20

25

30

35

40

45

50

55

60

65

10

original virtual machine since those copies of the original
virtual machine also include copies of the virtual persistence
store.

At step 615, the hypervisor receives an instruction to clone
the original virtual machine. An instruction to clone a virtual
machine is different from an instruction to migrate a virtual
machine for license enforcement purpose. A migrated virtual
machine is treated as the same virtual machine instance as the
original virtual machine; while the cloned virtual machine is
treated as a different virtual machine instance from the origi-
nal virtual machine, and therefore needs a separate software
license.

At step 620, in response to the instruction, the hypervisor
creates a cloned virtual machine instance as a copy of the
original virtual machine. As a copy, the cloned virtual
machine instance includes the virtual persistence store stor-
ing the original unique identifier. At step 625, the hypervisor
further generates a new unique identifier and injects a virtual
device containing the new unique identifier into the cloned
virtual machine instance. The hypervisor conducts the injec-
tion before the cloned virtual machine instance initializes for
the first time. The hypervisor continues to manage both the
existing virtual machine and the new virtual machine
instance.

In some embodiments, the hypervisor generates a random
or pseudo-random number as the new unique identifier for the
uniquely identifying the new virtual machine instance. The
random or pseudo-random number have enough random bits
to guarantee a uniqueness for the new virtual machine
instance against identifiers for virtual machines instances
across all hypervisors in the world.

At step 630, the hypervisor initializes the cloned virtual
machine instance. At step 635, a second instance of the
licensed application running on the cloned virtual machine
instance retrieves a new unique identifier from the injected
virtual device in the cloned virtual machine instance. The new
unique identifier uniquely identifies the cloned virtual
machine instance.

At step 640, the second instance of the licensed application
running on the cloned virtual machine instance determines
that the original software license does not apply to the cloned
virtual machine instance because the new unique identifier is
different from the original unique identifier.

At step 645, the second instance of the licensed application
running on the cloned virtual machine instance sends to a
license server, a request for a new software license to permit
the second instance of the licensed application to continue
running on the cloned virtual machine instance.

At decision block 650, the second instance of the licensed
application determines whether the license server permits the
request for the new software license. If the license server
permits the request, at step 655, the second instance of the
licensed application continues to run on the cloned virtual
machine instance under the new software license. If the
license server denies the request for the new software license,
at step 660, the second instance of the licensed application
stops running on the cloned virtual machine instance since the
original software license does not grant the cloned virtual
machine to run the licensed application.

FIG. 7 illustrates another sample process of preventing
software licensing exploitation in a virtual environment,
according to various embodiments. Particularly, the process
700 prevents licensing exploitation by reverting back virtual
machines using snapshots.

At step 705 of the process 700, a first instance of a license
server running on an original virtual machine stores at least
one software license in a virtual persistence store of the origi-

US 9,305,147 B1

11

nal virtual machine. The license server can grant a machine
(either a hardware machine or a virtual machine) the software
license by sending the software license information to that
machine. After granting the license, the license server
removes the software license from the virtual persistence
store so that the license server cannot grant the same software
license twice.

At step 710, the first instance of the license server running
on the original virtual machine retrieves an original unique
identifier from a virtual device of the original virtual machine.
The original unique identifier uniquely identifying the origi-
nal virtual machine. The hypervisor of the virtual environ-
ment has injected the virtual device into the original virtual
machine, when the hypervisor created the original virtual
machine. At step 715, the first instance of the license server
stores the original unique identifier in the virtual persistence
store.

At step 720, the hypervisor creates a snapshot of the origi-
nal virtual machine, in response to an instruction. The snap-
shot is a copy of the original virtual machine recording the
state of the original virtual machine at the point of time when
the snapshot is created.

After the hypervisor creates the snapshot of the original
virtual machine, at step 725, the first instance of the license
server grants the software license to a machine permitting the
machine to run a software application under the software
license. At step 730, the first instance of the license server
removes the software license from the virtual persistence
store of the original virtual machine.

At step 735, the hypervisor reverts the original virtual
machine to a reverted virtual machine instance based on the
snapshot, and injects a virtual box containing a new unique
identifier into the reverted virtual machine instance. The vir-
tual persistence store of the reverted virtual machine instance
still stores the original unique identifier as well as the soft-
ware license, while the original virtual machine before rever-
sion has already removed the software license from the virtual
persistence store of the original virtual machine as in step
730.

At step 740, a second instance of the license server running
on the reverted virtual machine instance retrieves the new
unique identifier from a virtual device of the reverted virtual
machine instance. The new unique identifier uniquely iden-
tifying the reverted virtual machine instance.

At step 745, the second instance of the license server run-
ning on the reverted virtual machine instance determines a
possibility that the license server is not allowed to grant the
software license stored in the virtual persistence store to
another machine, because the new unique identifier is difter-
ent from the original unique identifier. In other words, if the
reverted virtual machine instance is a different instance from
the original virtual machine, there is a possibility that the
license server running on the original virtual machine had
already granted the software license and removed the soft-
ware license from the virtual persistence store, before the
snapshot was created.

At step 750, the second instance of the license server run-
ning on the reverted virtual machine instance sends an inquiry
to an inventory tracking system on whether the license server
has already granted the software license to a machine. At
decision block 755, the second instance of the license server
determines whether the inventory tracking system confirms
that the license server has already granted the software
license. In some other embodiments, the second instance of
the license server can determine whether the license server
has already granted the software license by directly contact-
ing the machines (either hardware machines or virtual

10

15

20

25

30

35

40

45

50

55

60

65

12

machines) to confirm whether one of the machines has
already used that software license.

If the license server has already granted the software
license, at step 760, the second instance of the license server
removes the software license from the virtual persistence
store of the reverted virtual machine instance so that the
license server will not grant the removed software license
again. If the license server has not granted the software
license yet, at step 765, the second instance of the license
server keeps the software license in the virtual persistence
store of the reverted virtual machine instance so that the
license server can grant the software license in the future.

FIG. 8 is ablock schematic diagram that depicts a machine
in the exemplary form of a computer system 800, within
which a set of instructions for causing the machine to perform
any of the herein disclosed methodologies (e.g., FIGS. 7-8)
may be executed. For example, the computer system 800 can
be the physical machine 210 or 510 upon which the hypervi-
sor and virtual machines run. In some embodiments, the
computer system 800 may include a network router, a net-
work switch, a network bridge, personal digital assistant
(PDA), a cellular telephone, a Web appliance or any machine
capable of executing or transmitting a sequence of instruc-
tions that specify actions to be taken. The computer system
800 is intended to illustrate a hardware device on which any of
the instructions, processes, modules and components
depicted in the figures above (and any other processes, tech-
niques, modules and/or components described in this speci-
fication) can be implemented. As shown, the computer system
800 includes a processor 802, memory 804, non-volatile
memory 806, and a network interface 808. Various common
components (e.g., cache memory) are omitted for illustrative
simplicity. The computer system 800 can be of any applicable
known or convenient type, e.g., a personal computer (PC),
server-class computer or mobile device (e.g., smartphone,
card reader, tablet computer, etc.). The components of the
computer system 800 can be coupled together via abus and/or
through any other known or convenient form(s) of intercon-
nect(s).

One of ordinary skill in the relevant art will recognize that
the terms “machine-readable (storage) medium” or “com-
puter-readable (storage) medium” include any type of device
that is accessible by the processor 802. The memory 804 is
coupled to the processor 802 by, for example, a bus 810. The
memory 804 can include, by way of example but not limita-
tion, random access memory (RAM), e.g., dynamic RAM
(DRAM) and static RAM (SRAM). The memory 804 can be
local, remote, or distributed.

The bus 810 also couples the processor 802 to the non-
volatile memory 806 and drive unit 812. The non-volatile
memory 806 may be a hard disk, a magnetic-optical disk, an
optical disk, a read-only memory (ROM), e.g., a CD-ROM,
Erasable Programmable Read-Only Memory (EPROM), or
Electrically Erasable Programmable Read-Only Memory
(EEPROM), a magnetic or optical card, or another form of
storage for large amounts of data. The non-volatile memory
806 can be local, remote, or distributed.

The data structures, modules, and instruction steps
described in the figures above may be stored in the non-
volatile memory 806, the drive unit 812, or the memory 804.
The processor 802 may execute one or more of the modules
stored in the memory components.

The bus 810 also couples the processor 802 to the network
interface 808. The network interface 808 can include one or
more of a modem or network interface. A modem or network
interface can be considered to be part of the computer system
800. The network interface 808 can include an Ethernet card,

US 9,305,147 B1

13

a Bluetooth card, an optical fiber interface, a cable modem, a
token ring interface, or other interfaces for coupling a com-
puter system to other computer systems.

It is to be understood that embodiments may be used as or
to support software programs or software modules executed
upon some form of processing core (e.g., the CPU of a com-
puter) or otherwise implemented or realized upon or within a
machine or computer readable medium. A machine-readable
medium includes any mechanism for storing or transmitting
information in a form readable by a machine, e.g., a computer.
For example, a machine readable medium includes read-only
memory (ROM); random access memory (RAM); magnetic
disk storage media; optical storage media; flash memory
devices; electrical, optical, acoustical or other form of propa-
gated signals, for example, carrier waves, infrared signals,
digital signals, etc.; or any other type of media suitable for
storing or transmitting information.

Some embodiments of the disclosure have other aspects,
elements, features, and steps in addition to or in place of what
is described above. These potential additions and replace-
ments are described throughout the rest of the specification.

What is claimed is:
1. A computer-implemented method of preventing soft-
ware licensing exploitation in a virtual environment, com-
prising:
retrieving, by a first instance of a licensed application run-
ning on an original virtual machine as permitted by an
original software license, an original unique identifier
from a virtual device in the original virtual machine, the
original unique identifier uniquely identifying the origi-
nal virtual machine;
creating, by a hypervisor of the virtual environment, a
cloned virtual machine instance as a copy of the original
virtual machine in response to a time shift operation
request, wherein the time shift operation request is a
snapshot request involving creating the cloned virtual
machine instance as a point-of-time snapshot of the
original virtual machine;
retrieving, by a second instance of the licensed application
running on the cloned virtual machine instance, a new
unique identifier from a virtual device in the cloned
virtual machine instance, the new unique identifier
uniquely identifying the cloned virtual machine
instance;
determining, by the second instance of the licensed appli-
cation running on the cloned virtual machine instance,
that the original software license does not apply to the
cloned virtual machine instance because the new unique
identifier is different from the original unique identifier;

storing, by the first instance of the license application run-
ning on the original virtual machine, one or more soft-
ware licenses in a virtual persistence store of the original
virtual machine;

before the hypervisor receives the snapshot request,

retrieving, by the license application running on the
original virtual machine, an original unique identifier
from a virtual device of the original virtual machine, the
original unique identifier uniquely identifying the origi-
nal virtual machine;

storing the original unique identifier in the virtual persis-

tence store of the original virtual machine;

granting, by the license application running on the original

virtual machine, a software license to a virtual machine
instance by reducing a number of the software licenses
stored in the virtual persistence store of the original
virtual machine;

5

10

—_
w

20

25

30

35

40

45

50

55

60

65

14

reverting, by the hypervisor, the original virtual machine

back to the point-of-time snapshot;
determining, by the license application running on the
cloned virtual machine instance as the clone of the origi-
nal virtual machine, that the new unique identifier for the
new virtual machine instance is different from the origi-
nalunique identifier for the original virtual machine; and

determining, by the license application running on the new
virtual machine instance, at least one of the software
licenses stored in a virtual persistence store of the new
virtual machine instance has already been granted and
therefore cannot be granted again.

2. The computer-implemented method of claim 1, further
comprising:

sending, from the second instance of the licensed applica-

tion running on the cloned virtual machine instance to a
license server, a request for a new software license to
permit the second instance of the licensed application to
continue running on the cloned virtual machine
instance; and

in an event that the license server denies the request for the

new software license, stopping the second instance of
the licensed application from running on the cloned
virtual machine instance.
3. The computer-implemented method of claim 1, further
comprising:
receiving, by the hypervisor of the virtual environment, an
instruction to clone the original virtual machine; and

in response to the instruction, generating the new unique
identifier and injecting the virtual device containing the
new unique identifier into the cloned virtual machine
instance, before the cloned virtual machine instance ini-
tializes for the first time.

4. The computer-implemented method of claim 1, further
comprising:

storing, by the first instance of the licensed application

running on the original virtual machine, the original
unique identifier in a virtual persistence store of the
original virtual machine.

5. The computer-implemented method of claim 4, wherein
the cloned virtual machine instance includes the virtual per-
sistence store storing the original unique identifier.

6. A computer-implemented method of preventing soft-
ware licensing exploitation in a virtual environment, com-
prising:

storing, by a first instance of a license server running on an

original virtual machine, at least one software license in
a virtual persistence store of the original virtual
machine;

retrieving, by the first instance of the license server running

on the original virtual machine, an original unique iden-
tifier from a virtual device of the original virtual
machine, the original unique identifier uniquely identi-
fying the original virtual machine;

creating, by a hypervisor of the virtual environment, a

snapshot of the original virtual machine, in response to a
time shift operation request, wherein the time shift
operation request is a snapshot request involving creat-
ing a cloned virtual machine instance as a point-of-time
snapshot of the original virtual machine;

reverting, by the hypervisor of the virtual environment, the

original virtual machine to a reverted virtual machine
instance based on the snapshot;

retrieving, by a second instance of the license server run-

ning on the reverted virtual machine instance, a new
unique identifier from a virtual device of the reverted

US 9,305,147 B1

15

virtual machine instance, the new unique identifier
uniquely identifying the reverted virtual machine
instance; and
determining, by the second instance of the license server
running on the reverted virtual machine instance, a pos-
sibility that the license server is not allowed to grant the
software license stored in the virtual persistence store to
another machine, because the new unique identifier is
different from the original unique identifier;
storing, by the first instance of the license server running on
the original virtual machine, one or more software
licenses in a virtual persistence store of the original
virtual machine;
before the hypervisor receives the snapshot request,
retrieving, by the license server running on the original
virtual machine, an original unique identifier from a
virtual device of the original virtual machine, the origi-
nal unique identifier uniquely identifying the original
virtual machine;
storing the original unique identifier in the virtual persis-
tence store of the original virtual machine;
granting, by the license server running on the original
virtual machine, a software license to a virtual machine
instance by reducing a number of the software licenses
stored in the virtual persistence store of the original
virtual machine;
reverting, by the hypervisor, the original virtual machine
back to the point-of-time snapshot;
determining, by the license server running on the cloned
virtual machine instance as the clone of the original
virtual machine, that the new unique identifier for the
new virtual machine instance is different from the origi-
nalunique identifier for the original virtual machine; and
determining, by the license server running on the new
virtual machine instance, at least one of the software
licenses stored in a virtual persistence store of the new
virtual machine instance has already been granted and
therefore cannot be granted again.
7. The computer-implemented method of claim 6, further
comprising:
sending, by the second instance of the license server run-
ning on the reverted virtual machine instance, an inquiry
to an inventory tracking system on whether the license
server has already granted the software license to a
machine; and
in an event that the inventory tracking system replies that
the license server has already granted the software
license to a machine, removing the software license
from the virtual persistence store of the reverted virtual
machine instance so that the license server will not grant
the removed software license again.
8. The computer-implemented method of claim 6, further
comprising:
after the hypervisor creates the snapshot of the original
virtual machine, granting, by the first instance of the
license server, the software license to a machine permit-
ting the machine to run a software application under the
software license; and
before the hypervisor reverts the original virtual machine
to the reverted virtual machine instance based on the
snapshot, removing the software license from the virtual
persistence store of the original virtual machine.
9. The computer-implemented method of claim 8, wherein
the virtual persistence store of the reverted virtual machine
instance still stores the software license, while the original

10

15

20

25

30

35

40

45

50

55

60

65

16

virtual machine before reversion has already removed the
software license from the virtual persistence store of the
original virtual machine.

10. A computer-implemented method of monitoring and
enforcing software licenses in a virtual environment, com-
prising:

receiving, by a hypervisor of the virtual environment, a

time shift operation request involving creating a new
virtual machine instance of an existing virtual machine,
wherein the time shift operation request is a snapshot
request involving creating the new virtual machine
instance as a point-of-time snapshot of the existing vir-
tual machine;

in response to the time shift operation, generating a new

unique identifier for uniquely identifying the new virtual
machine instance among virtual machine instances
across the world;
creating, by the hypervisor, the new virtual machine
instance, the new virtual machine instance including a
virtual device containing the new unique identifier; and

retrieving, by a licensed application or a license server
running on the new virtual machine instance, the new
unique identifier from the virtual device to determine
whether new virtual machine instance is the same virtual
machine as the existing virtual machine for software
license enforcement purpose;

storing, by an instance of the license server running on the

existing virtual machine, one or more software licenses
in a virtual persistence store of the existing virtual
machine;

before the hypervisor receives the snapshot request,

retrieving, by the license server running on the existing
virtual machine, an original unique identifier from a
virtual device of the existing machine, the original
unique identifier uniquely identifying the existing vir-
tual machine;

storing the original unique identifier in the virtual persis-

tence store of the existing virtual machine;

granting, by a license server running on the existing virtual

machine, a software license to a virtual machine instance
by reducing a number of the software licenses stored in
the virtual persistence store of the existing virtual
machine;

reverting, by the hypervisor, the existing virtual machine

back to the point-of-time snapshot;

determining, by the license server running on the new

virtual machine instance as the clone of the existing
virtual machine, that the new unique identifier for the
new virtual machine instance is different from the origi-
nal unique identifier for the existing virtual machine;
and

determining, by the license server running on the new

virtual machine instance, at least one of the software
licenses stored in a virtual persistence store of the new
virtual machine instance has already been granted and
therefore cannot be granted again.

11. The computer-implemented method of claim 10,
wherein the time shift operation request is a clone request
involving creating the new virtual machine instance as a clone
of the existing virtual machine.

12. The computer-implemented method of claim 11, fur-
ther comprising:

before the hypervisor receives the clone request, retrieving,

by an instance of the licensed application running on the
existing virtual machine, an original unique identifier

US 9,305,147 B1

17

from a virtual device of the existing virtual machine, the
original unique identifier uniquely identifying the exist-
ing virtual machine;

storing the original unique identifier in a virtual persistence

store of the existing virtual machine;

after the hypervisor creates the new virtual machine

instance, determining, by the licensed application run-
ning on the new virtual machine instance as the clone of
the existing virtual machine, that the new unique iden-
tifier for the new virtual machine instance is different
from the original unique identifier for the existing virtual
machine; and

communicating, by the licensed application, with a licens-

ing management system to determine whether the
licensed application is permitted to run on the new vir-
tual machine instance under a proper software license.

13. The computer-implemented method of claim 10, fur-
ther comprising: communicating, by the license server, with a
licensing management system to identify one or more soft-
ware licenses that are stored in the virtual persistence store of
the new virtual machine instance and that have not been
granted by the license server to virtual machine instances or
physical machines.

14. The computer-implemented method of claim 10,
wherein the time shift operation request is not a request for
migrating the existing virtual machine, and the hypervisor
does not generate a unique identifier in response to a request
for migrating the existing virtual machine.

15. The computer-implemented method of claim 10,
wherein the hypervisor generates a random or pseudo-ran-
dom number as the new unique identifier for the uniquely
identifying the new virtual machine instance, the random or
pseudo-random number having enough random bits to guar-
antee a uniqueness for the new virtual machine instance
against identifiers for virtual machines instances across all
hypervisors in the world.

16. The computer-implemented method of claim 10,
wherein the new unique identifier uniquely identifies the new
virtual machine instance among virtual machine instances
managed by the hypervisor.

17. The computer-implemented method of claim 10,
wherein the step of creating the new virtual machine instance
comprises:

creating, by the hypervisor, the new virtual machine

instance and a virtual device containing the new unique
identifier; and

injecting the virtual device into the new virtual machine

instance, before the new virtual machine instance initial-
izes in the virtual environment for the first time.

18. The computer-implemented method of claim 10,
wherein the new unique identifier uniquely identifies the new
virtual machine instance among virtual machine instances
across the world.

19. The computer-implemented method of claim 10,
wherein the hypervisor manages both the existing virtual
machine and the new virtual machine instance.

20. The computer-implemented method of claim 10,
wherein the hypervisor is a bare-bone hypervisor or a hosted
hypervisor.

21. A computing device, comprising:

one or More processors;

ahypervisor configured to create and manage one or more

virtual machine instances running on the hypervisor
using the one or more processors;

a memory storing executable instructions, when executed

by the processor, is configured to perform a process of:

10

15

20

25

30

35

40

45

50

55

60

65

18

receiving, by the hypervisor, a time shift operation request
involving creating a new virtual machine instance of an
existing virtual machine, wherein the time shift opera-
tion request is a snapshot request;

in response to the time shift operation, generating a new
unique identifier for uniquely identifying the new virtual
machine instance among one or more virtual machine
instances managed by the hypervisor;

creating, by the hypervisor, the new virtual machine
instance as reverting an existing virtual machine back to
apoint-of-time state based on a snapshot, the new virtual
machine instance including a virtual device containing
the new unique identifier;

retrieving, by a licensed application or a license server
running on the new virtual machine instance, the new
unique identifier from the virtual device to determine
whether new virtual machine instance is the same virtual
machine as the existing virtual machine for software
license enforcement purpose;

storing, by an instance of the license server running on the
existing virtual machine, at least one software license in
a virtual persistence store of the existing virtual
machine;

before the hypervisor receives the snapshot request,
retrieving, by the license server running on the existing
virtual machine, an original unique identifier from a
virtual device of the existing machine, the original
unique identifier uniquely identifying the existing vir-
tual machine;

storing the original unique identifier in the virtual persis-
tence store of the existing virtual machine;

granting, by a license server running on the existing virtual
machine, the software license to a virtual machine
instance, and removing the software license from the
virtual persistence store of the existing virtual machine;

determining, by the license server running on the new
virtual machine instance as a reverted copy of the exist-
ing virtual machine based on the snapshot, that the new
unique identifier for the new virtual machine instance is
different from the original unique identifier for the exist-
ing virtual machine; and

determining, by the license server running on the new
virtual machine instance, a possibility that the license
server is not allowed to grant the software license stored
in the virtual persistence store, because the new unique
identifier is different from the original unique identifier.

22. The computing device of claim 21, wherein the time

shift operation request is a clone request, and the process
further includes:

before the hypervisor receives the clone request, retrieving,
by an instance of the licensed application running on the
existing virtual machine under an original software
license, an original unique identifier from a virtual
device of the existing virtual machine, the original
unique identifier uniquely identifying the existing vir-
tual machine;

storing the original unique identifier in a virtual persistence
store of the existing virtual machine;

after the hypervisor creates the new virtual machine
instance, determining, by the licensed application run-
ning on the new virtual machine instance as the clone of
the existing virtual machine, that the new unique iden-
tifier for the new virtual machine instance is different
from the original unique identifier for the existing virtual
machine; and

determining, by the licensed application running on the
new virtual machine instance, that the original software

US 9,305,147 B1
19 20

license does not permit the licensed application running
on the new virtual machine instance, because the new
virtual machine instance is different from the existing
virtual machine.

